
Solution exercise set 4

Problem 1

In the previous exercise set we showed that, in the approximation of a point source, the diffusion of
the water tracing solution in the pipe follows the solution of the diffusion equation in one dimension

ρ(x) =
Cste√
4πDt

e−
x2

4Dt (1)

with ρ(x) the density assumed to be constant over the radial coordinates in the pipe (narrow pipe),
D the diffusion coefficient and Cste = M

A . We will use here a more realistic description of the initial
concentration profile. For the general case we have

ρ(x) =

∫ ∞
−∞

ρ0(ξ)√
4πDt

e−
(x−ξ)2
4Dt dξ (2)

with ρ0(ξ) the initial concentration profile. All the points of the initial concentration profile con-
tribute (the integral corresponds to the sum of their contributions) to the profile at a time t following
the solution of the diffusion equation for a point source (1).

• At t = 0, we inject 5ml in a pipe with cross section A = 0.8cm2. This gives

ρ0(x) =

{
ρ0 = 230 g/l |x| < d0 = 3.125cm

0 |x| > d0 = 3.125cm

We have introduced d0 = L
2 . Now we can use this result in (2) to get the concentration at

any time t

ρ(x, t) =
ρ0
2

[
erf(

d0 − x√
4Dt

) + erf(
d0 + x√

4Dt
)

]
(3)

• The standard deviation σ is given by

σ2 =

∫∞
−∞ x

2ρ(x)dx∫∞
−∞ ρ(x)dx

(4)

Now we compute ∫ ∞
−∞

ρ(x)dx =

∫ ∞
−∞

∫ d0

−d0

ρ0√
4πDt

e−
(x−ξ)2
4Dt dξdx = 2d0ρ0. (5)

In the last step we have computed first the integral over x and used the first result of Problem
2 from the previous exercise set.
We still have to compute∫ ∞

−∞
x2ρ(x)dx =

∫ ∞
−∞

∫ d0

−d0
x2

ρ0√
4πDt

e−
(x−ξ)2
4Dt dξdx =

2

3
d30ρ0 + 4d0Dtρ0 (6)
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In the last step we have computed first the integral over x making the change of variable
Y = x−ξ√

4Dt
. To compute this integral we used both the first (to compute a term of the

type
∫∞
−∞ exp(−Y 2)) and the second result of Problem 2 (to compute a term of the type∫∞

−∞ Y
2 exp(−Y 2)) from the previous exercise set. A third term of the form

∫∞
−∞ Y exp(−Y 2)

is zero since we integrate an odd function over a domain symmetric upon substitution Y ↔
−Y . Finally we get the result from (4)

σ =

√
d20
3

+ 2Dt ≈ 1.8cm (7)

for t = 1s. The term 2Dt gives a negligible contribution to the standard deviation at the
time t = 1s. However, the term d20 is constant over time. This means after a sufficiently long
time, the contribution of the term 2Dt will become dominant (for our problem this time is
typically really long, see the last result of Problem 1 of the previous exercise set). The point
source approximation is a good approximation as long as we are interested at points in the
pipe at a distance much larger than the domain L occupied by the injected fluid at t = 0.

• The solution in the presence of advection can be obtained replacing x by x − vadvt in (2).
The integral can be computed

ρ(x) =

∫ ∞
−∞

ρ0(ξ)√
4πDt

e−
(x−(ξ+vadvt))

2

4Dt dξ =
ρ0
2

[
erf(

d0 − x+ vadvt√
4Dt

) + erf(
d0 + x− vadvt√

4Dt
)

]
(8)

From this solution we also get immediately the solution in the absence of advection (3) setting
vadv = 0.

• Advection can be neglected as long as the length scale related to advection is smaller that
all the other relevant length scales of the system (carefull, only quantities with the same
dimension can be compared !!). For our problem we need to compare three length to decide
which part of the process is dominant or can be neglected. At a time t we have the three
lengths to compare

d0 , vadvt and
√
Dt. (9)

The first length is fixed while the others evolve in time. If we compare only advection and
diffusion, we recover the condition (see the lecture) that the diffusion is dominant if the Péclet
number Pe = D

v2advt
is large.
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